Returns all prime numbers between two designated start and stop numbers, along with their associated data and optional detailed explanations and prime types!

GET   get-all-primes-between-two-numbers (paid)

http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&include_explanations=<boolean>&include_prime_types_list=<boolean>&language=<string>
AUTHORIZATION API Key

This request is using the API Key from Prime Numbers API collection in thePime Numbers API environment

PARAMS


key
YOUR_API_KEY

(Required) your API key

include_explanations
<boolean>

includes the full explanations for each item if true (default is false)

include_prime_types_list
<boolean>

includes the full prime types list for each item if true (default is false)

language
<string>

show the output translated into that language (it can be english, mandarin, hindi, spanish, french, german, italian, japanese, russian) (default is english)


Success (with start/stop numbers)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=350&end=1000&language=english'
                                    
Example Response

200 OK


[
    {
        "random_prime_number_value": 353,
        "base_conversions": {
            "binary_value": "101100001",
            "senary_value": "1345",
            "hexa_value": "161"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 19 computations in 0.00078284559283566 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 359,
        "base_conversions": {
            "binary_value": "101100111",
            "senary_value": "1355",
            "hexa_value": "167"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 19 computations in 0.00078947063839568 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 361,
        "base_conversions": {
            "binary_value": "101101001",
            "senary_value": "1401",
            "hexa_value": "169"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-09-02 00:24:57: server mac-server processed 19 computations in 0.00079166666666667 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 367,
        "base_conversions": {
            "binary_value": "101101111",
            "senary_value": "1411",
            "hexa_value": "16f"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 19 computations in 0.00079821850252783 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 373,
        "base_conversions": {
            "binary_value": "101110101",
            "senary_value": "1421",
            "hexa_value": "175"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 19 computations in 0.00080471699649283 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 379,
        "base_conversions": {
            "binary_value": "101111011",
            "senary_value": "1431",
            "hexa_value": "17b"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 19 computations in 0.00081116343058049 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 383,
        "base_conversions": {
            "binary_value": "101111111",
            "senary_value": "1435",
            "hexa_value": "17f"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00081543274128254 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 389,
        "base_conversions": {
            "binary_value": "110000101",
            "senary_value": "1445",
            "hexa_value": "185"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00082179512180483 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 397,
        "base_conversions": {
            "binary_value": "110001101",
            "senary_value": "1501",
            "hexa_value": "18d"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00083020245188214 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 401,
        "base_conversions": {
            "binary_value": "110010001",
            "senary_value": "1505",
            "hexa_value": "191"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00083437434977087 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 409,
        "base_conversions": {
            "binary_value": "110011001",
            "senary_value": "1521",
            "hexa_value": "199"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00084265618400653 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 419,
        "base_conversions": {
            "binary_value": "110100011",
            "senary_value": "1535",
            "hexa_value": "1a3"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 20 computations in 0.00085289539543578 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 421,
        "base_conversions": {
            "binary_value": "110100101",
            "senary_value": "1541",
            "hexa_value": "1a5"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00085492852202847 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 431,
        "base_conversions": {
            "binary_value": "110101111",
            "senary_value": "1555",
            "hexa_value": "1af"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00086502247883445 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 433,
        "base_conversions": {
            "binary_value": "110110001",
            "senary_value": "2001",
            "hexa_value": "1b1"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00086702716861187 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 439,
        "base_conversions": {
            "binary_value": "110110111",
            "senary_value": "2011",
            "hexa_value": "1b7"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00087301361832321 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 443,
        "base_conversions": {
            "binary_value": "110111011",
            "senary_value": "2015",
            "hexa_value": "1bb"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00087698188249372 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 449,
        "base_conversions": {
            "binary_value": "111000001",
            "senary_value": "2025",
            "hexa_value": "1c1"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00088290083751738 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 457,
        "base_conversions": {
            "binary_value": "111001001",
            "senary_value": "2041",
            "hexa_value": "1c9"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.00089073159693466 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 461,
        "base_conversions": {
            "binary_value": "111001101",
            "senary_value": "2045",
            "hexa_value": "1cd"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 21 computations in 0.000894621273066 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 463,
        "base_conversions": {
            "binary_value": "111001111",
            "senary_value": "2051",
            "hexa_value": "1cf"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00089655978297292 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 467,
        "base_conversions": {
            "binary_value": "111010011",
            "senary_value": "2055",
            "hexa_value": "1d3"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00090042428270726 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 479,
        "base_conversions": {
            "binary_value": "111011111",
            "senary_value": "2115",
            "hexa_value": "1df"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00091191952617664 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 487,
        "base_conversions": {
            "binary_value": "111100111",
            "senary_value": "2131",
            "hexa_value": "1e7"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00091950318711308 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 491,
        "base_conversions": {
            "binary_value": "111101011",
            "senary_value": "2135",
            "hexa_value": "1eb"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00092327165859001 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 499,
        "base_conversions": {
            "binary_value": "111110011",
            "senary_value": "2151",
            "hexa_value": "1f3"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00093076282932036 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 503,
        "base_conversions": {
            "binary_value": "111110111",
            "senary_value": "2155",
            "hexa_value": "1f7"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 22 computations in 0.00093448589550024 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 509,
        "base_conversions": {
            "binary_value": "111111101",
            "senary_value": "2205",
            "hexa_value": "1fd"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 23 computations in 0.00094004284772321 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 521,
        "base_conversions": {
            "binary_value": "1000001001",
            "senary_value": "2225",
            "hexa_value": "209"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 23 computations in 0.00095105935087611 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 523,
        "base_conversions": {
            "binary_value": "1000001011",
            "senary_value": "2231",
            "hexa_value": "20b"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 23 computations in 0.00095288305216911 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 529,
        "base_conversions": {
            "binary_value": "1000010001",
            "senary_value": "2241",
            "hexa_value": "211"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-09-02 00:24:57: server mac-server processed 23 computations in 0.00095833333333333 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 541,
        "base_conversions": {
            "binary_value": "1000011101",
            "senary_value": "2301",
            "hexa_value": "21d"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 23 computations in 0.00096914194580108 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 547,
        "base_conversions": {
            "binary_value": "1000100011",
            "senary_value": "2311",
            "hexa_value": "223"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 23 computations in 0.00097450129696054 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 557,
        "base_conversions": {
            "binary_value": "1000101101",
            "senary_value": "2325",
            "hexa_value": "22d"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.00098336864343383 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 563,
        "base_conversions": {
            "binary_value": "1000110011",
            "senary_value": "2335",
            "hexa_value": "233"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.00098865087647539 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 569,
        "base_conversions": {
            "binary_value": "1000111001",
            "senary_value": "2345",
            "hexa_value": "239"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.00099390503682305 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 571,
        "base_conversions": {
            "binary_value": "1000111011",
            "senary_value": "2351",
            "hexa_value": "23b"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.0009956502621YOUR_API_KEY8 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 577,
        "base_conversions": {
            "binary_value": "1001000001",
            "senary_value": "2401",
            "hexa_value": "241"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.001000867679122 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 587,
        "base_conversions": {
            "binary_value": "1001001011",
            "senary_value": "2415",
            "hexa_value": "24b"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.0010095034532988 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 593,
        "base_conversions": {
            "binary_value": "1001010001",
            "senary_value": "2425",
            "hexa_value": "251"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.0010146496384905 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 599,
        "base_conversions": {
            "binary_value": "1001010111",
            "senary_value": "2435",
            "hexa_value": "257"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 24 computations in 0.00101976985421 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 601,
        "base_conversions": {
            "binary_value": "1001011001",
            "senary_value": "2441",
            "hexa_value": "259"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010214708893443 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 607,
        "base_conversions": {
            "binary_value": "1001011111",
            "senary_value": "2451",
            "hexa_value": "25f"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010265570828962 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 613,
        "base_conversions": {
            "binary_value": "1001100101",
            "senary_value": "2501",
            "hexa_value": "265"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010316182002617 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 617,
        "base_conversions": {
            "binary_value": "1001101001",
            "senary_value": "2505",
            "hexa_value": "269"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010349785290312 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 619,
        "base_conversions": {
            "binary_value": "1001101011",
            "senary_value": "2511",
            "hexa_value": "26b"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010366546087187 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 631,
        "base_conversions": {
            "binary_value": "1001110111",
            "senary_value": "2531",
            "hexa_value": "277"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010466547239234 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 641,
        "base_conversions": {
            "binary_value": "1010000001",
            "senary_value": "2545",
            "hexa_value": "281"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010549157417643 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 643,
        "base_conversions": {
            "binary_value": "1010000011",
            "senary_value": "2551",
            "hexa_value": "283"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010565601944255 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 647,
        "base_conversions": {
            "binary_value": "1010000111",
            "senary_value": "2555",
            "hexa_value": "287"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 25 computations in 0.0010598414451647 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 653,
        "base_conversions": {
            "binary_value": "1010001101",
            "senary_value": "3005",
            "hexa_value": "28d"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010647443615984 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 659,
        "base_conversions": {
            "binary_value": "1010010011",
            "senary_value": "3015",
            "hexa_value": "293"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010696248044161 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 661,
        "base_conversions": {
            "binary_value": "1010010101",
            "senary_value": "3021",
            "hexa_value": "295"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010712466776819 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 673,
        "base_conversions": {
            "binary_value": "1010100001",
            "senary_value": "3041",
            "hexa_value": "2a1"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010809268142561 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 677,
        "base_conversions": {
            "binary_value": "1010100101",
            "senary_value": "3045",
            "hexa_value": "2a5"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010841343192715 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 683,
        "base_conversions": {
            "binary_value": "1010101011",
            "senary_value": "3055",
            "hexa_value": "2ab"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010889278621143 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 691,
        "base_conversions": {
            "binary_value": "1010110011",
            "senary_value": "3111",
            "hexa_value": "2b3"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0010952866190079 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 701,
        "base_conversions": {
            "binary_value": "1010111101",
            "senary_value": "3125",
            "hexa_value": "2bd"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 26 computations in 0.0011031835245728 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 709,
        "base_conversions": {
            "binary_value": "1011000101",
            "senary_value": "3141",
            "hexa_value": "2c5"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011094605796412 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 719,
        "base_conversions": {
            "binary_value": "1011001111",
            "senary_value": "3155",
            "hexa_value": "2cf"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011172573064827 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 727,
        "base_conversions": {
            "binary_value": "1011010111",
            "senary_value": "3211",
            "hexa_value": "2d7"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.001YOUR_API_KEY4557302261 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 733,
        "base_conversions": {
            "binary_value": "1011011101",
            "senary_value": "3221",
            "hexa_value": "2dd"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011280821975567 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 739,
        "base_conversions": {
            "binary_value": "1011100011",
            "senary_value": "3231",
            "hexa_value": "2e3"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011326897682557 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 743,
        "base_conversions": {
            "binary_value": "1011100111",
            "senary_value": "3235",
            "hexa_value": "2e7"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011357510975366 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 751,
        "base_conversions": {
            "binary_value": "1011101111",
            "senary_value": "3251",
            "hexa_value": "2ef"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 27 computations in 0.0011418491338371 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 757,
        "base_conversions": {
            "binary_value": "1011110101",
            "senary_value": "3301",
            "hexa_value": "2f5"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011464013743498 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 761,
        "base_conversions": {
            "binary_value": "1011111001",
            "senary_value": "3305",
            "hexa_value": "2f9"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011494261853445 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 769,
        "base_conversions": {
            "binary_value": "1100000001",
            "senary_value": "3321",
            "hexa_value": "301"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011554520519885 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 773,
        "base_conversions": {
            "binary_value": "1100000101",
            "senary_value": "3325",
            "hexa_value": "305"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011584532312048 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 787,
        "base_conversions": {
            "binary_value": "1100010011",
            "senary_value": "3351",
            "hexa_value": "313"
        },
        "previous_prime_gap": 14,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011688966782588 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 797,
        "base_conversions": {
            "binary_value": "1100011101",
            "senary_value": "3405",
            "hexa_value": "31d"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011762995177911 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 809,
        "base_conversions": {
            "binary_value": "1100101001",
            "senary_value": "3425",
            "hexa_value": "329"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011851218877773 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 811,
        "base_conversions": {
            "binary_value": "1100101011",
            "senary_value": "3431",
            "hexa_value": "32b"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 28 computations in 0.0011865859054915 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 821,
        "base_conversions": {
            "binary_value": "1100110101",
            "senary_value": "3445",
            "hexa_value": "335"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0011938790651579 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 823,
        "base_conversions": {
            "binary_value": "1100110111",
            "senary_value": "3451",
            "hexa_value": "337"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0011953323573151 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 827,
        "base_conversions": {
            "binary_value": "1100111011",
            "senary_value": "3455",
            "hexa_value": "33b"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0011982336537124 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 829,
        "base_conversions": {
            "binary_value": "1100111101",
            "senary_value": "3501",
            "hexa_value": "33d"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0011996816707407 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 839,
        "base_conversions": {
            "binary_value": "1101000111",
            "senary_value": "3515",
            "hexa_value": "347"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0012068956964967 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 841,
        "base_conversions": {
            "binary_value": "1101001001",
            "senary_value": "3521",
            "hexa_value": "349"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-09-02 00:24:58: server mac-server processed 29 computations in 0.0012083333333333 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 853,
        "base_conversions": {
            "binary_value": "1101010101",
            "senary_value": "3541",
            "hexa_value": "355"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0012169234888759 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 857,
        "base_conversions": {
            "binary_value": "1101011001",
            "senary_value": "3545",
            "hexa_value": "359"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.001219773430692 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 859,
        "base_conversions": {
            "binary_value": "1101011011",
            "senary_value": "3551",
            "hexa_value": "35b"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0012211959074794 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 863,
        "base_conversions": {
            "binary_value": "1101011111",
            "senary_value": "3555",
            "hexa_value": "35f"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 29 computations in 0.0012240359017974 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 877,
        "base_conversions": {
            "binary_value": "1101101101",
            "senary_value": "4021",
            "hexa_value": "36d"
        },
        "previous_prime_gap": 14,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.00YOUR_API_KEY39244079134 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 881,
        "base_conversions": {
            "binary_value": "1101110001",
            "senary_value": "4025",
            "hexa_value": "371"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.00YOUR_API_KEY67351733047 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 883,
        "base_conversions": {
            "binary_value": "1101110011",
            "senary_value": "4031",
            "hexa_value": "373"
        },
        "previous_prime_gap": 2,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.00YOUR_API_KEY81381631753 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 887,
        "base_conversions": {
            "binary_value": "1101110111",
            "senary_value": "4035",
            "hexa_value": "377"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.0012409393843196 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 899,
        "base_conversions": {
            "binary_value": "1110000011",
            "senary_value": "4055",
            "hexa_value": "383"
        },
        "previous_prime_gap": 12,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-09-02 00:24:58: server mac-server processed 30 computations in 0.0012493053625471 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 907,
        "base_conversions": {
            "binary_value": "1110001011",
            "senary_value": "4111",
            "hexa_value": "38b"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.0012548516955313 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 911,
        "base_conversions": {
            "binary_value": "1110001111",
            "senary_value": "4115",
            "hexa_value": "38f"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.0012576156893989 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 919,
        "base_conversions": {
            "binary_value": "1110010111",
            "senary_value": "4131",
            "hexa_value": "397"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.001263125532602 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 929,
        "base_conversions": {
            "binary_value": "1110100001",
            "senary_value": "4145",
            "hexa_value": "3a1"
        },
        "previous_prime_gap": 10,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 30 computations in 0.0012699792211773 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 937,
        "base_conversions": {
            "binary_value": "1110101001",
            "senary_value": "4201",
            "hexa_value": "3a9"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012754356554178 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 941,
        "base_conversions": {
            "binary_value": "1110101101",
            "senary_value": "4205",
            "hexa_value": "3ad"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012781551375148 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 947,
        "base_conversions": {
            "binary_value": "1110110011",
            "senary_value": "4215",
            "hexa_value": "3b3"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012822235461191 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 953,
        "base_conversions": {
            "binary_value": "1110111001",
            "senary_value": "4225",
            "hexa_value": "3b9"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012862790867028 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 961,
        "base_conversions": {
            "binary_value": "1111000001",
            "senary_value": "4241",
            "hexa_value": "3c1"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-09-02 00:24:58: server mac-server processed 31 computations in 0.0012916666666667 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 967,
        "base_conversions": {
            "binary_value": "1111000111",
            "senary_value": "4251",
            "hexa_value": "3c7"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012956926504555 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 971,
        "base_conversions": {
            "binary_value": "1111001011",
            "senary_value": "4255",
            "hexa_value": "3cb"
        },
        "previous_prime_gap": 4,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0012983697042402 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 977,
        "base_conversions": {
            "binary_value": "1111010001",
            "senary_value": "4305",
            "hexa_value": "3d1"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0013023749673406 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 983,
        "base_conversions": {
            "binary_value": "1111010111",
            "senary_value": "4315",
            "hexa_value": "3d7"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0013063679505492 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 991,
        "base_conversions": {
            "binary_value": "1111011111",
            "senary_value": "4331",
            "hexa_value": "3df"
        },
        "previous_prime_gap": 8,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 31 computations in 0.0013116730198914 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    },
    {
        "random_prime_number_value": 997,
        "base_conversions": {
            "binary_value": "1111100101",
            "senary_value": "4341",
            "hexa_value": "3e5"
        },
        "previous_prime_gap": 6,
        "prime_density": "7.86960000",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "isolated_prime_density": "7.86960000"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 32 computations in 0.0013156377836539 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs"
    }
]
    


Success (with start/stop numbers, explanations, and prime_types)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&include_explanations=true&include_prime_types_list=true&start=69&end=200&language=english'
                                    
Example Response

200 OK


[
    {
        "random_prime_number_value": 71,
        "base_conversions": {
            "binary_value": "1000111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "155",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "47",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 73,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 67,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 17,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 8 computations in 0.00035108957388235 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 73,
        "base_conversions": {
            "binary_value": "1001001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "201",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "49",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 71,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 79,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 37,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 9 computations in 0.0003560001560549 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 79,
        "base_conversions": {
            "binary_value": "1001111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "211",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "4f",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 83,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 73,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 97,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 9 computations in 0.00037034143405482 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 83,
        "base_conversions": {
            "binary_value": "1010011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "215",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "53",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 79,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 89,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 9 computations in 0.00037960139913101 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 89,
        "base_conversions": {
            "binary_value": "1011001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "225",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "59",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 83,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "true",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 9 computations in 0.00039308254716903 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 97,
        "base_conversions": {
            "binary_value": "1100001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "241",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "61",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 8,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 101,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 79,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 10 computations in 0.00041036907507484 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 101,
        "base_conversions": {
            "binary_value": "1100101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "245",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "65",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 103,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 97,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 10 computations in 0.0004187448175467 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 103,
        "base_conversions": {
            "binary_value": "1100111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "251",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "67",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 101,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 107,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 10 computations in 0.00042287048187884 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 107,
        "base_conversions": {
            "binary_value": "1101011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "255",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "6b",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 109,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 103,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 701,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 10 computations in 0.00043100335136619 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 109,
        "base_conversions": {
            "binary_value": "1101101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "301",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "6d",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 107,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 113,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 10 computations in 0.00043501277120461 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 113,
        "base_conversions": {
            "binary_value": "1110001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "305",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "71",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 109,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 311,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 11 computations in 0.00044292274219728 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 121,
        "base_conversions": {
            "binary_value": "1111001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "321",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "79",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 8,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 127,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-09-02 00:24:57: server mac-server processed 11 computations in 0.00045833333333333 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 127,
        "base_conversions": {
            "binary_value": "1111111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "331",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "7f",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 131,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 121,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "true",
            "power_of_two_value": 7,
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 11 computations in 0.00046955948623269 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 131,
        "base_conversions": {
            "binary_value": "10000011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "335",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "83",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 127,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 137,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 11 computations in 0.00047689679759415 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 137,
        "base_conversions": {
            "binary_value": "10001001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "345",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "89",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 139,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 131,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 12 computations in 0.00048769582961332 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 139,
        "base_conversions": {
            "binary_value": "10001011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "351",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "8b",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 137,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 143,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 12 computations in 0.00049124275510632 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 143,
        "base_conversions": {
            "binary_value": "10001111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "355",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "8f",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 139,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 149,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-09-02 00:24:57: server mac-server processed 12 computations in 0.00049826086429589 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 149,
        "base_conversions": {
            "binary_value": "10010101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "405",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "95",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 151,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 143,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 941,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 12 computations in 0.0005086064839889 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 151,
        "base_conversions": {
            "binary_value": "10010111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "411",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "97",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 149,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 157,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 12 computations in 0.00051200857197685 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 157,
        "base_conversions": {
            "binary_value": "10011101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "421",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "9d",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 163,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 751,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.00052208183692257 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 163,
        "base_conversions": {
            "binary_value": "10100011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "431",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "a3",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 167,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 157,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.00053196438895015 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 167,
        "base_conversions": {
            "binary_value": "10100111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "435",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "a7",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 169,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 163,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 761,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.000538451999305 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 169,
        "base_conversions": {
            "binary_value": "10101001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "441",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "a9",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 167,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 173,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-09-02 00:24:57: server mac-server processed 13 computations in 0.00054166666666667 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 173,
        "base_conversions": {
            "binary_value": "10101101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "445",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "ad",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "false",
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 169,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 179,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.00054803943491525 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 179,
        "base_conversions": {
            "binary_value": "10110011",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "455",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "b3",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 6,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 181,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "true",
            "sexy_value": 173,
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 971,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.00055746200667749 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 181,
        "base_conversions": {
            "binary_value": "10110101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "501",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "b5",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 179,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 13 computations in 0.00056056766862807 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 191,
        "base_conversions": {
            "binary_value": "10111111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "515",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "bf",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 10,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "true",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 193,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 14 computations in 0.00057584479004522 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 193,
        "base_conversions": {
            "binary_value": "11000001",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "521",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "c1",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 191,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 197,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 14 computations in 0.00057885183289374 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 197,
        "base_conversions": {
            "binary_value": "11000101",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "525",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "c5",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 4,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 199,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "true",
            "cousin_value": 193,
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "false",
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 14 computations in 0.00058481953531742 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    },
    {
        "random_prime_number_value": 199,
        "base_conversions": {
            "binary_value": "11000111",
            "binary_value_explanation": "prime number base-2 (binary value), useful for cryptography and cryptocurrency",
            "senary_value": "531",
            "senary_value_explanation": "prime number base-6 (senary value), useful for mathematical research",
            "hexa_value": "c7",
            "hexa_value_explanation": "prime number base-16 (hexa value), useful for cryptography and cryptocurrency"
        },
        "previous_prime_gap": 2,
        "previous_prime_gap_explanation": "how many successive prime and composite numbers are between this prime and the previous one",
        "prime_density": "7.86960000",
        "prime_density_explanation": "how many prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
        "isolated_primes": {
            "is_isolated_prime": "false",
            "is_isolated_prime_explanation": "prime numbers that are more than 100 composite numbers away from each of their neighbours, with an average density of 0.008086097174%",
            "isolated_prime_density": "7.86960000",
            "isolated_prime_density_explanation": "how many chances (%) to randomly find an isolated prime number in this million composite numbers (between 0 and 1 000 000)"
        },
        "prime_types": {
            "is_palindrome": "false",
            "palindrome_explanation": "number that is simultaneously palindromic (which reads the same backwards as forwards) and prime (examples: 2, 3, 5, 7, 11, 101, 131, 151, 181, 191, 313, 353, 373, 383, 727, 757, 787, 797, 919, 929) (reference: https://en.wikipedia.org/wiki/Palindromic_prime)",
            "palindrome_percentage": "0.01190000",
            "palindrome_density_explanation": "how many palindrome prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_twin": "true",
            "twin_value": 197,
            "twin_explanation": "primes that are no more than 2 composite numbers from each other (examples: (3, 5), (5, 7), (11, 13), (17, 19)) (reference: https://en.wikipedia.org/wiki/Twin_prime)",
            "twin_percentage": "1.64450000",
            "twin_density_explanation": "how many twin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_cousin": "false",
            "cousin_explanation": "primes that are no more than 4 composite numbers from each other (examples: (3, 7), (7, 11), (13, 17), (19, 23), (37, 41), (43, 47)) (reference: https://en.wikipedia.org/wiki/Cousin_prime)",
            "cousin_percentage": "1.63800000",
            "cousin_density_explanation": "how many cousin prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_sexy": "false",
            "sexy_explanation": "primes that are no more than 6 composite numbers from each other (examples: (5,11), (7,13), (11,17), (13,19), (17,23), (23,29)) (reference: https://en.wikipedia.org/wiki/Sexy_prime)",
            "sexy_percentage": "2.52870000",
            "sexy_density_explanation": "how many sexy prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_reversible": "true",
            "reversible_emirp_value": 991,
            "reversible_explanation": "primes that become a different prime when their decimal digits are reversed. The name emirp is obtained by reversing the word prime (examples: 13, 17, 31, 37, 71, 73, 79, 97, 107, 113, 149, 157) (reference: https://en.wikipedia.org/wiki/Emirp)",
            "reversible_percentage": "1.12150000",
            "reversible_density_explanation": "how many reversible prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_pandigital": "false",
            "pandigital_explanation": "pandigital prime in a base has at least one instance of each base digit. (examples: 2143 (base 4), 7654321 (base 7)) (reference: https://www.xarg.org/puzzle/project-euler/problem-41/)",
            "pandigital_percentage": "0.00210000",
            "pandigital_density_explanation": "how many pandigital prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_repunit": "false",
            "repunit_explanation": "repunits primes are positive integers in which every digit is one (examples: 11, 1111111111111111111) (reference: https://primes.utm.edu/glossary/page.php?sort=Repunit)",
            "repunit_percentage": "0.00010000",
            "repunit_density_explanation": "how many repunit prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_mersenne": "false",
            "mersenne_explanation": "mersenne prime is a prime number that is of the form 2n - 1 (one less than a power of two) for some integer n. They are named after Marin Mersenne (1588-1648), a French monk who studied them in his Cogitata Physica-Mathematica (1644) (examples: 3 (2^2 - 1), 7 (2^3 - 1), 31 (2^5 - 1) ) (reference: https://www.mersenne.org/)",
            "mersenne_percentage": "0.00080000",
            "mersenne_density_explanation": "how many mersenne prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)",
            "is_fibonacci": "false",
            "fibonacci_explanation": "prime numbers that are also Fibonacci numbers (examples: 2, 3, 5, 13, 89, 233, 1597) (reference: https://oeis.org/A005478)",
            "fibonacci_percentage": "0.00090000",
            "fibonacci_density_explanation": "how many fibonacci prime numbers (%) can be found in this million composite numbers (between 0 and 1 000 000)"
        },
        "birth_certificate": "2018-06-16 22:01:25: server mac-server processed 14 computations in 0.00058778066581941 micro-seconds using 2 x 3 GHz Quad-Core Intel Xeon CPUs",
        "birth_certificate_explanation": "how many computations, how much time and what computer power was used to find this prime number"
    }
]
    


Error (no key)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=&language=english'
                                    
Example Response

403 Forbidden


{
    "error": "please include the api key in your query"
}
    


Error (no start number)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&language=english'
                                    
Example Response

404 Not Found


{
    "error": "start number not specified; start number has to be an integer > 2"
}
    


Error (no end number)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=330&language=english'
                                    
Example Response

404 Not Found


{
    "error": "end number not specified; please include end number has to be an integer < 126 568 967 071"
}
    


Error (start number too small)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=1&end=1000&language=english'
                                    
Example Response

404 Not Found


{
    "error": "minimum allowed start number has to be > 2"
}
    


Error (alpha start number)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=a&end=1000&language=english'
                                    
Example Response

404 Not Found


{
    "error": "start number has to be an integer > 2"
}
    


Error (alpha end number)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=30&end=a&language=english'
                                    
Example Response

404 Not Found


{
    "error": "please include end number < 126 568 967 071"
}
    


Error (start number more than maximum)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=100000000000&end=100000000000&language=english'
                                    
Example Response

404 Not Found


{
    "error": "start number has to be < end number"
}
    


Error (end number more than maximum)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=30&end=200000000000&language=english'
                                    
Example Response

404 Not Found


{
    "error": "maximum allowed end number has to be < 126 568 967 071"
}
    


Error (no results)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=100000000000&end=100000000001&language=english'
                                    
Example Response

404 Not Found


{
    "error": "no numbers found"
}
    


Error (end number smaller than the start number)


Example Request
curl --location --request GET 'http://api.prime-numbers.io/get-all-primes-between-two-numbers.php?key=YOUR_API_KEY&start=300&end=200&language=english'
                                    
Example Response

404 Not Found


{
    "error": "start number has to be < end number"
}